

FINAL

Tupelo Railroad Relocation Planning & Environmental Study

Phase 1 – Feasibility Analysis Volume I – Report

May 2006

Prepared for:

Prepared by:

TABLE OF CONTENTS

Volume I - Report

Tabl	e of (Conte	nts	i
Inde	ex of	Figure	es	v
Inde	ex of	Tables	s	viii
1.0	Exe	cutive	Summary	1-1
2.0		oduct	ion	2-1
	2.1		se	
		2.1.1	Data Collection	
		2.1.2	Rail Traffic Analysis	
		2.1.3	5 5	
		2.1.4	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2-6
			In-Town Alternative	
	2.2	2.1.6	8	
	2.2	Addit	ional Considerations	2-/
3.0	Rele	evant	Studies & Articles	3-1
	3.1	Urban	n Rail Relocations Study, 2002	
		3.1.1	Route Selection	3-1
		3.1.2		
		3.1.3	Conclusion	
	3.2		pring Project, 2004	
		3.2.1	Transportation Improvements	
		3.2.2	Conclusion	3-4
	3.3		east Mississippi Daily Journal Articles	
		3.3.1	Emergency Responders	
		3.3.2	Safety Concerns	
		3.3.3	Traffic Delay	
		3.3.4	Summary	3-5
4.0	Exis	stina C	Conditions	4-1
	4.1	Railro		
		4.1.1		4-3
			4.1.1.1 Physical Plant	
			4.1.1.2 Track Vertical Geometry	
			4.1.1.3 Track Horizontal Geometry	
			4.1.1.4 Right-of-Way	4 4

		4.1.1.5 Operating Speed	
		4.1.1.6 Rail Traffic	
		4.1.2 Train Accident Data	
	4.2	Roadway Crossings	
		4.2.1 Grade-Separated	
		4.2.2 At-Grade Crossings	4-7
		4.2.3 At-Grade Crossing Accident Data	
	4.3	Proposed Improvements In the Region	
		4.3.1 Proposed Developments	4-9
		4.3.2 Roadway Improvements	4-11
		4.3.2.1 Committed Primary Federal/State Highways.	
		4.3.2.2 Committed Secondary State Highways	4-11
		4.3.2.3 Committed City Streets	4-11
	4.4	Natural and Biological Features	4-12
		4.4.1 FEMA Floodplain	4-12
		4.4.2 National Wetlands Inventory	4-12
		4.4.3 Environmentally Sensitive Areas	4-12
		4.4.4 Mississippi State Parks	4-17
		4.4.5 Natchez Trace Parkway	
	4.5	Cultural Features and Community Services	4-17
		4.5.1 Historical & Archeological Sites	
		4.5.2 Hazardous Materials Sites	4-17
		4.5.3 Community Services	4-20
		4.5.4 Recreational Facilities	
		4.5.5 Utilities	
5.0	Desi	gn Criteria	5-1
		3.	–
6.0	Trai	n Volumes	6-1
	6.1	Existing Rail Traffic	6-1
		6.1.1 BNSF Traffic	
		6.1.2 KCS Traffic	6-1
	6.2	Future Rail Traffic	6-1
		6.2.1 Methodology	
		6.2.2 BNSF Traffic	
		6.2.3 KCS Traffic	
	6.3	Summary	
7.0	At-G	Grade Auto Traffic Delay Analysis	7-1
	7.1	Description of Crossings	
	7.2	Traffic Delay Analyses	
		7.2.1 Data Collection and Process	
		/ 2 1 1 Data Source	/ -4
		7.2.1.1 Data Source 7.2.1.2 Highway Data	

			7.2.1.3 Rail Data	7-13
		7.2.2	Delay Analysis	7-17
			7.2.2.1 Maximum Queue, Q _{max}	7-17
			7.2.2.2 Delay	7-18
			7.2.2.3 Cost of Congestion	7-19
			7.2.2.4 Level of Service	7-19
	7.3	Traffi	c Delay Results	7-21
		7.3.1	Cost of Congestion at the At-grade Crossing Locations	7-21
		7.3.2	Cost of Congestion at the Near-by Intersections	
	7.4	Sumn	nary of At-Grade Crossing Traffic Delay Study	7-42
	7.5	Gener	ral Conclusions	7-45
8.0	۸lta	rnativ	/es	Q_1
0.0	8.1		ational Improvements	
	0.1	8.1.1	Existing Operations	
		8.1.2		
	8.2		wn Alternative	
	0.2	8.2.1	Scenario 1	
		8.2.2	Scenario 2	
	8.3		Alignment Determination	
	0.5	8.3.1	Typical Rail Section	
		8.3.2	Corridor Width	
		8.3.3	Basis for Proposed Alignment Creation	8-6
		0.5.5	8.3.3.1 Developing Least-Cost Path Ranking Criteria	8-8
			8.3.3.2 GRID Overlay Methodology	
			8.3.3.3 Least-Cost Path Analysis	
			8.3.3.4 Corridor Generation & Reduction Process	8-11
	8.4	Alterr	native Alignments	
	0	8.4.1	Alignment A	8-13
		8.4.2	Alignment B	8-15
		8.4.3	Alignment C	
		8.4.4	Alignment D	8-19
			Alignment E	8-22
		8.4.6	Impacts to Railroad Operations	8-24
		00	8.4.6.1 Methodology	8-24
			8.4.6.2 Results	8-25
			8.4.6.3 Travel Time	8-25
		8.4.7	Corridor Abandonment	8-26
	8.5		ation Analysis	8-27
	.	8.5.1	Evaluation Measures	8-27
		8.5.2	Impact Summary	8-27
		8.5.3	At-Grade Traffic Conflict	8-29
			8.5.3.1 Existing Conditions	8-29
			8 5 3 2 At Grada Intersection Closures	Ω 20

		8.5.3.3 Proposed At-Grade Intersection Construction	8-29
	8.6	Cost Analysis	8-32
		8.6.1 Preliminary Construction Cost Estimate	
		8.6.2 Operating Costs	8-33
		8.6.3 At-Grade Crossing Maintenance	
9.0	Con	clusion	9-1
		Summary of Analysis	
	9.2	Recommendation	9-3

GLOSSARY OF RAILROAD TERMS

APPENDICES

Appendix A –	Northeast Mississippi Daily Journal Articles
Appendix B –	E+C Highway Network Technical Memorandum
Appendix C –	Utility Services Technical Memorandum
Appendix D –	Current Railroad Operations Technical Memorandum
Appendix E –	Cultural Resources Technical Memorandum
Appendix F –	Feasibility of "In-Town" Alternative Technical Memorandum
Appendix G –	Alternative Alignment Detailed Construction Cost Estimates

VOLUME II – Alternative Alignment Concept Plans

INDEX OF FIGURES

Figure No.	Figure Title	Page No.
2-1	Location Map	2-2
2-2	Study Area	2-4
3-1	"Urban Rail Relocation" Alignments 2002	3-2
3-2	Wellspring Conceptual Layout	3-4
4-1	Study Area	4-2
4-2	Train Accidents Per County	4-6
4-3	Motorized Vehicle/Train Collisions at At-Grade Crossings Per County	4-9
4-4	Wellspring Conceptual Layout	4-10
4-5	Committed Roadways	4-13
4-6	FEMA Floodplains	4-14
4-7	Wetlands	4-15
4-8	Environmentally Sensitive Areas	4-16
4-9	Archeological / Historical Areas and Sites	4-18
4-10	Hazardous Material Sites	4-19
4-11	Community Services	4-21
4-12	Utilities	4-24
7-1	At-Grade Crossing Location and Crossing ID	7-3
7-2	AADT Count Stations and ID	7-6
7-3	Traffic Growth Trend	7-9

7-4	Train Traffic Distribution Illustration in the Year 2005	7-14
7-5	Train Operating Speed in the Tupelo Study Area	7-16
7-6	Relationship of Delay, Waiting Time, and Queuing Length	7-17
7-7	2005 PM Peak Hour Crossing Level of Service (Without Switching Operation)	7-27
7-8	2005 PM Peak Hour Crossing Level of Service (With Switching Operation)	7-28
7-9	2030 PM Peak Hour Crossing Level of Service (Without Switching Operation)	7-29
7-10	2030 PM Peak Hour Crossing Level of Service (With Switching Operation)	7-30
7-11	Year 2005 PM Peak Hour BNSF Train Crossing Eason Blvd at Ryder Street	7-38
7-12	Year 2030 PM Peak Hour BNSF Train Crossing Gloster St. at Main St. & Park St. at Jefferson St.	7-39
7-13	Year 2030 PM Peak Hour BNSF Train Crossing Elizabeth St. at Spring St.	7-40
7-14	Year 2030 PM Peak Hour KCS Train Crossing Front St. at Main St. & Park St. at Jefferson St.	7-41
8-1	Operational Improvement 8	3-2
8-2	In-Town Alternative Scenario 1	8-5
8-3	In-Town Alternative Scenario 2	8-5
8-4	Rail Typical Sections 8	8-7
8-5	Least Cost Path Alignments 8	8-12
8-6	Alignment A	8-14
8-7	Alignment B	8-16
8-8	Alignment C	8-18

8-9	Alignment D	8-20
8-10	Alignment E	8-23
8-11	Traffic Conflict Removed	8-31
8-12	Traffic Conflict Added	8-31
8-13	Overall Traffic Conflict Removed	8-32

INDEX OF TABLES

Table No.	<u>Table Title</u> <u>Page N</u>	0.
5-1	Rail Design Criteria 5-1	
5-2	Roadway Design Criteria5-3	
7-1	At-Grade Crossing ID Chart 7-2	
7-2	Daily Time Periods 7-4	
7-3	20-Year Historical AADT Data Provided by MDOT7-5	
7-4	ANOVA Table of Regression Analysis for Traffic Projection7-8	
7-5	At-Grade Crossing Roadway Characteristics 7-1	0
7-6	Peak-to-Daily Ratio (p/d) 7-1	2
7-7	Assumed Percentage of Heavy Trucks7-1	3
7-8	Adjusted Percentage of Heavy Trucks7-1	3
7-9	Train Traffic Distribution (In the Year 2004-2030)7-1	5
7-10	Signalized Intersection LOS vs. Delay7-2	0
7-11	Un-signalized Intersection LOS vs. Delay 7-2	0
7-12	Total At-Grade Crossing Cost of Congestion from 2005 to 20307-2	2
7-13	Rank of At-Grade Crossing by Highest Total Daily Delay (veh-hr)7-2	2
7-14	Current Year of 2005 At-Grade Crossing Cost of Congestion7-2	4
7-15	Future Year of 2030 At-Grade Crossing Cost of Congestion7-2	5
7-16	Year 2005 and Year 2030 At-Grade Crossing Average Delay and LOS in PM Peak Hour 7-2	6

/-1/	Simulation Results B
7-18	Year 2005 Near-by Intersections Delay and LOS in PM Peak Hour
7-19	Year 2030 Near-by Intersections Delay and LOS in PM Peak Hour
7-20	Current Year of 2005 Near-by Intersections Cost of Congestion7-35
7-21	Future Year of 2030 Near-by Intersections Cost of Congestion7-36
7-22	From Current Year 2005 to Future Year 2030 Near-by Intersections Cost of Consgestion 7-37
7-23	Summary of Level of Service at the At-Grade Crossings in the Year 2005 and Year 2030 during PM Peak Hour7-43
7-24	Summary of Level of Service for the Near-by Intersections during PM Peak Hour in the Year 2005 and Year 20307-44
7-25	Annual Cost of Congestion for Year 2005 and Year 20307-44
7-26	Cumulative Cost of Congestion from Year 2005 to Year 20307-44
8-1	Ranking of Input Layers for Least-Cost Path Analysis8-9
8-2	Alternative Weights for Least-Cost Path Models8-10
8-3	Alignment A Right-of-Way 8-15
8-4	Alignment B Right-of-Way8-17
8-5	Alignment C Right-of-Way 8-19
8-6	Alignment D Right-of-Way 8-21
8-7	Alignment E Right-of-Way 8-24
8-8	Net Train-miles Change 8-25
8-9	Total Annual Change in Train-miles (2030)8-25

8-10	Travel Time (minutes)	8-26
8-11	BNSF Corridor Abandonment	8-26
8-12	Alternative Evaluation Measures	8-28
8-13	Existing At-Grade Traffic Conflict	8-30
8-14	Alternatives Cost Summary	8-34
8-15	Additional Annual Operating Costs (2030 Rail Volumes in 2005 Dollars)	8-34
8-16	Annual Maintenance Cost	8-35
9-1	Cumulative Cost of Congestion from Year 2005 to Year 2030	9-1

